Thursday, January 16, 2020

The Fifth Of Matter And Supernova

I am reposting this because much more has been added onto it.

This has been added to the cosmology theory, "The Theory Of Stationary Space", section 5d).

THE FIFTH OF MATTER AND NUCLEAR FISSION

I went over a news article involving nuclear weapons negotiations with Iran when something caught my attention. ( New York Times Sept 8 2015 )

In a nuclear reaction, what is known as a chain reaction takes place. A high-velocity neutron strikes the nucleus of an atom and splits it. Two smaller atoms result but the nuclear binding energy of the two new nuclei is less than that of the one large atom. This energy is released and this is where the energy of a nuclear reaction comes from.

The two new atoms have fewer overall neutrons than the original large atom. This is because the number of neutrons per proton must increase as we move to heavier atoms. These neutrons are released, to continue at high speeds and split more nuclei so that the chain reaction continues.

Only two elements are suitable for such a fission reaction. These are plutonium and the 235 isotope of uranium. Plutonium is an entirely man-made element formed by getting uranium to absorb neutrons, creating an unstable nucleus so that a neutron transforms itself into a proton by emitting an electron, thus forming a new element. In other elements, and the usual 238 isotope of uranium, there are too many neutrons which hold the nucleus together too tightly for it to be split by a neutron.


The number 238 or 235 refers to the total number of nucleons in the nucleus, protons and neutrons. The number of neutrons emitted per fission of a nucleus varies, for uranium-235 it averages about 2.5 and for plutonium it averages about 3. These neutrons then fly off at high speeds to each split another nucleus and continue the chain reaction.

But the geometry of the mass of plutonium of uranium-235 is also a factor. The nucleus is very small in relation to the total size of the atom. The vast majority of an atom is empty space. The often used model is of a strawberry in the middle of a playing field in a sports arena, where the strawberry represents the nucleus and the arena is the orbitals of the electrons in the atom.

A neutron is so-named because it has an overall neutral electric charge, meaning that it is not affected by the negative charges of the electrons and the positive charge of the nucleus in an atom. Since the space within the electron orbitals are so vast compared with that of the nucleus, the neutron nearly always misses the nucleus and passes right through the atom. Splitting atoms and continuing the chain reaction depends on neutrons eventually hitting a nucleus before reaching the edge of the fissile material.

This means that, if the mass of plutonium or uranium-235 has too few atoms, too many neutrons will leave the mass altogether before striking a nucleus, and the chain reaction will cease. The mass must be of at least a certain size because one of the high-speed neutrons may possibly pass through millions of atoms before it strikes a nucleus. That certain minimum size needed to keep a chain reaction going, although there is always an element of chance involved, is known as the "critical mass".

The mass is also shaped in the form of a sphere because it has the lowest surface area per volume over which the neutron could escape before striking a nucleus.

The critical mass is necessary due to geometry and the ratio of the scale of the entire atom to the nucleus. But the energy released from each fission of an atom is a different factor altogether. When a nuclear chain reaction begins, the energy being released will blast the mass apart well before all of the atoms in it have undergone fission. This, of course, will halt the chain reaction even though it creates the explosion.

The figure given in the article that I mentioned was 1 / 5. In the first nuclear test, which used plutonium, in New Mexico, it was determined that only about 1 / 5 of the atoms in the mass had actually undergone fission before it blasted itself apart and halted the chain reaction.

But why was it 1 / 5? That one-fifth is information, and information must come from somewhere. The fact that the figure was 1 / 5 must tell us something about nuclear physics or the nature of matter.

A mass of a metallic element is held together by what are known as "delocalized" electrons. This means that, rather than having all electrons in orbitals around their home atoms, as is usually the case with non-metals except for the covalent bonds of carbon compounds in which two atoms may share outer electrons, metal atoms share their outer electrons among a vast number of atoms. Most bonds between atoms of non-metals are ionic, in which one atom loses an electron to another so that they are bound by the fact that one has a net negative, and the other a net positive, charge.

This means that the entire metal mass is held together by the opposite charge attraction between it's negatively-charged electrons in orbitals around atoms and the positively-charged nuclei of those atoms.

When an atom of plutonium of the 235 isotope of uranium is split by a neutron during the fusion process, it releases only a few percent of the total binding energy between like-charged protons in the nucleus. Two smaller atoms are formed by the split, typically krypton and barium, but the nuclei of these two atoms has less total binding energy and also a few fewer neutrons than the original uranium or plutonium atom, and that is the energy and neutrons that get released as it is split.

To release all of the energy within the atom, including the Mass-Energy Equivalence energy, we would have to react equal amounts of matter and antimatter together. Antimatter is not much different from our familiar matter, except that the electric charges are reversed so that positively-charged positrons replace electrons in orbitals around a negatively-charged nucleus.

To understand why the critical mass of metal blasts apart, halting the chain reaction, after one-fifth of it's atoms have been split by the fission process, imagine the entire mass as one large atom. This is how it behaves since it is held together by electrons in orbitals around vast numbers of atoms rather than only one or two atoms. A section of metal over which the atoms share their outer electrons is referred to as a crystal.

The reason that the critical mass of metal blasts itself apart after 1 / 5 of the atoms have been split is explained in simple terms by my cosmology theory, "The Theory Of Stationary Space", in the compound posting on this blog by that name, specifically section 5).

First remember from the theory of how information works, "The Theory Of Complexity". The complexity of a number is defined as the value of the denominator when the number is expressed as a fraction or a ratio. That 1 / 5 is information which must come from somewhere and it involves a complexity of fifths.

In the cosmology theory everything, both matter and space, are composed of infinitesimal negative and positive electric charges. Space is defined as a perfectly alternating pattern of negative and positive charges in multiple dimensions. Matter is defined as a concentration of like charges, held together against the mutual repulsion of like charges by energy. Energy is thus equal to mass and this is what we refer to as the Mass-Energy Equivalence. This is also where Einstein's famous formula for the conversion of mass and energy comes from, E = MC squared.

Section 5) of the cosmology theory stipulates that, within matter, actually only two out of every five interfaces between adjacent electric charges are between like charges. The other three out of five are between opposite charges. But the interfaces between like charges hold three times as much energy as those between opposite charges.

This factor of three explains where the information for the operation of quarks comes from. Protons and neutrons are each composed of three quarks. Up quarks have an electric charge of + 2 / 3 and down quarks have an electric charge of - 1 / 3. Two up quarks and one down quark give us a proton with an overall charge of +1. Two down quarks and one up quark give us a neutron with an overall charge of zero.

The fact that each of the 2 / 5 of charge interfaces which are between like charges each holds three times as much energy as the interfaces between opposite charges, because it takes energy to hold like charges together against their mutual repulsion, means that 2 / 3 of the overall energy in the interfaces between electric charges within matter are in the interfaces between like charges. This is because 2 x 3 is twice as much as 3 x 1.

That explains why, as I pointed out recently in "Relativistic Mass And Trigonometry", the relativistic mass increase for an object moving at half the speed of light, 1.155 and it's reciprocal .866, is exactly the same as the trigonometric functions, secant and cosine, as a 30 degree angle which is 1 / 3 of a right angle. If, as in my cosmology theory, velocity is really an angle with the speed of light being a 90 degree angle, then a 30 degree angle is 1 / 3 of the speed of light.

That is a reflection of 2 / 3 of the energy within matter being held in the interfaces between like electric charges. The other 1 / 3 that is held in the interfaces between opposite charges "does not count" because if the matter were not there it would be empty space. Space is a perfectly alternating checkerboard pattern of negative and positive electric charges in multiple dimensions, although the perfect pattern can be disturbed by the ripples of energy that we refer to as electromagnetic waves.

So, in calculating anything about the energy in matter we do not include this 1 / 3 of energy in the interfaces between opposite charges in the matter that would be there anyway if the matter were empty space.

Now remember that the critical mass described above is held together by the opposite charge attraction between the negatively-charged electrons and the positively-charged nuclei. Even though both the electrons and the protons in the nuclei are matter in that 2 / 3 of their energy in electric charge interfaces is held between like charges, that does not apply to the attraction between the two that holds the atom together and also the mass of metal because the definition of a metal is that a vast number of atoms share their outer electrons between them. The mass of metal is held together by the opposite charge attraction between those electrons and the nuclei.

Since the mass of metal, within the protons and electrons themselves and not the space between the two, 1 / 3 of the energy in that mass is held in the interfaces between opposite charges, and each atom and also the entire mass is held together by the opposite-charge attraction between electrons and protons, that means that the 2 / 3 of energy within the matter that is held in the 2 / 5 of the charge interfaces that are between like charges, that means that these 2 / 5 hold twice as much energy as that in the electron-proton attraction that holds each atom, as well as the entire mass, together. Because, again, 2 x 3 is twice as much as 3 x 1.

That means that when 1 / 5 of the atoms in the critical mass have been split by fission, releasing their energy, that matches the energy in the opposite-charge electrical attraction that is holding the mass of metal together. That is why in the critical mass of plutonium in the first nuclear bomb that was tested, in New Mexico, only 1 / 5 of the atoms were actually split because, at that point, the mass blasted itself apart which halted the fission process.

The total energy held in the 2 / 5 of interfaces between electric charges in matter that are between like charges was not released, remember that only a few percent of the total energy in a nucleus is released by fission. But this was the energy that would be released in the stage that was involved, that of splitting a large atom of plutonium, or the 235 isotope of uranium, into two smaller atoms, which also forces a rearrangement of the crystalline structure of the metal, held together by shared electrons. The rest of the energy in the interfaces between like charges is still held in the two smaller atoms.

But the fact that it was 1 / 5 of the atoms in the critical mass that split before the mass blasted itself apart shows that what I have explained all along in the cosmology theory is correct.

THE FIFTH OF MATTER AND SUPERNOVA

In the initial tests of nuclear bombs, it is known that only about 1 / 5 of the atoms actually underwent fission. The bomb works by firing high-speed neutrons at a critical mass of either plutonium or the 235 isotope of uranium. A neutron has a neutral electric charge and so is not affected by the negative charges of the electrons in atoms, or the positive charge of the nucleus.

The nucleus takes up only a very small space in the center of the atom. The vast majority of an atom is empty space. But eventually, a neutron will probably strike a nucleus before exiting the mass of fissile material. This splits the nucleus into two smaller atoms, typically krypton and barium, and, since these two new atoms have fewer total neutrons than the larger original atom, these excess neutrons also fly out at high speeds and (hopefully) strike and split another nucleus before exiting the critical mass.

This thus forms that is referred to as a chain reaction. The average number of neutrons released by a split uranium-235 atom is about 2.5 and by a plutonium atom about 3. This is why most uranium atoms, isotope 238, will not work as fissile material. There are too many neutrons holding the nucleus together so that it cannot be split by the neutron.

That is why the mass undergoing fission has to be at least the critical mass in size, and spherical. If the mass is smaller than the critical mass then too many neutrons will escape before striking a nucleus because the smaller mass will have a higher surface-to-volume ratio.

My cosmology theory explains why only 1 / 5 of the atoms actually undergo fusion. The reason that the fission is never anywhere near complete is simply that the mass will blast itself apart before the chain reaction can get to all of the nuclei in every atom.

The reason that it is 1 / 5 of the atoms undergo fission is that 2 / 5 of the interfaces between electric charges in atoms are between like charges, which mutually repel but are held together by energy. This energy holding like charges together is, in my cosmology theory, what forms matter, and is the well-known Mass-Energy Equivalence. The other 3 / 5 of the interfaces between electric charges are between opposite charges, which naturally attract.

Empty space is made up of a multi-dimensional checkerboard of opposite negative and positive electric charges. Like charges can be held together, against their mutual repulsion, by energy. There is some energy in all interfaces between charges but the ones between like charges have three times as much energy in them as the ones between opposite charges.

The bonds between like charges, held together by energy, are what hold the fundamental particles together, the electrons and quarks that make up the nucleons. But it is the attraction between opposite charges that holds the whole mass together. But since 2 / 5 of the total interfaces between electric charges are between like charges, which each have three times are much energy as the 3 / 5 between the opposite charges that hold the whole mass together, that means that the energy released when 1 / 5 of the atoms have been split by fission, enough energy has been released to surpass the energy in the interfaces between opposite charges that hold the mass together, and thus the mass is blasted apart.

With that review, now let's see how this applies to a supernova and our Solar System.

We know that the sun is a so-called "second-generation star". We can tell by spectroscopy that the sun contains heavy elements that are well beyond it's current stage in the nuclear fusion process. Fission, described in the review above, is the opposite of fusion. Fusion is the crunching together of atoms by gravity. A star is born when enough matter comes together by it's mutual gravity that the electron repulsion that ordinarily holds atoms apart is overcome and small atoms are crunched together into larger ones.

Large atoms contain less energy than the smaller atoms that were crunched together to form them. This is because the nucleus of the larger atoms must contain more neutrons per protons and an electron is crunched into a proton to create a neutron, and this is a lower energy state than the proton and electron separate. The excess energy is released as radiation and this is why the sun and other stars shine.

Another way that we could look at the internal energy of atoms, the Mass-Energy Equivalence, is in terms of the surface area of the atoms. Surface area represents distance, and thus energy. The new and larger atom has less overall surface area than the smaller atoms that were crunched together to form it. This is the solar or stellar energy that gets released as radiation.

The lightest, and by far the most abundant, element in the universe is hydrogen. The sun is presently crunching four atoms of hydrogen into one atom of helium. The leftover energy is released as the sun's radiation. When the hydrogen is used up, the sun will begin crunching the helium together into successively heavier atoms. The process continues until we get to iron, element number 26. The ordinary fusion process can only go as far as iron.

This ordinary stellar fusion process, up to iron, is known as the slow or S-process. Elements heavier than iron, the heaviest naturally-occurring element is uranium, number 92 meaning that it has 92 protons in a nucleus, are formed only by the release of energy as a large star explodes as a supernova. That is why iron and elements, and elements below it, are exponentially more common than elements heavier than iron. These heavier elements require a net input of energy which is not possible without the explosion.

A star is an equilibrium between the inward force of gravity and the outward energy of it's nuclear fusion. As the star keeps crunching smaller atoms into heavier ones, and then those into still heavier ones, the energy released per time increases because larger atoms being crunched together releases more net energy than smaller ones. This upsets the equilibrium of the star and it begins growing outward. Late in it's life, the sun is expected to reach what is known as the "red giant stage".

But if the star is large enough, meaning that more atoms are undergoing fusion in it's core, the star can actually explode and scatter it's component matter across space. That is what the Solar System is today, and why the sun is a second-generation star. A large star exploded and much of it's matter fell back together by gravity to form the sun and planets. That previous star must have been much larger than the sun because the sun is not large enough to explode as a supernova.

This previous star, before the sun, is what we saw on the physics and astronomy blog, www.markmeekphysics.blogspot.com ,"The Supernova Energy Hypothesis And The Most Accessible Star", June 2009.

I define a nova as the blasting away of the outer layers of a star, due to the increased energy release of fusion in the star's core, and a supernova as the explosion of the star from the center. This is why, in my view, the outer planets of the Solar System contain a preponderance of molecules formed of light atoms, such as methane and ammonia, and comets are made of ices such as water. The previous star first blasted away the lighter atoms in it's outer reaches, which went further out into space because they had a higher starting point, before exploding from the center.

We can easily see how the ordinary fusion process only goes as far as iron, before the previous star exploded in a supernova, by how abundant iron is in the earth and the inner Solar System. Mercury has been nicknamed "The Iron Planet". The earth is 64x the volume of the moon, but has 81x it's mass, because, while both are made out of rock, the earth has a heavy iron core that the moon lacks. This lack of an iron core shows in the fact that the moon has practically no magnetic field.

Iron is the most common element in the earth by mass and close to 1 / 3 the mass of the earth consists of iron. We know that lighter elements in the inner Solar System were forced outward by the sun's heat and the solar wind, the stream of charged particles from the sun.

Now here is my hypothesis. The mass of the earth and inner planets, up to Mars, are now close to 1 / 3 iron. But originally, before lighter elements being forced toward the outer Solar System by the heat and solar wind, the mass of the inner Solar System was about 1 / 5 iron.

This means that the supernova, the explosion of the previous star that existed before the present sun, occurred when about 1 / 5 of the mass in the core of the star was in the form of iron, and the fusion process could not go any further. A supernova is not exactly a nuclear explosion, it is a change in the previous equilibrium of the star, but it is driven by the fusion process.

This is like an inverse mirror image of the fission critical mass, described above, blasting itself apart when 1 / 5 of the atoms have been split. The energy released comes from the interfaces of like charges that are held together by energy, what science calls the "Mass-Energy Equivalence". 2 / 5 of all interfaces between electric charges in matter are such interfaces between like charges. These each have three times, according to my cosmology theory, as much energy as the usual interfaces of empty space between opposite charges that naturally attract.

That is why, when 1 / 5 of the atoms undergoing fusion in the core of the star have become part of an iron atom and the process can go no further, the energy released surpasses that of the 3 / 5 of the interfaces between opposite charges that holds the star together, but each has only 1 / 3 of the energy of an interface between like charges. This is what causes the star to explode as a supernova and is why, after much matter consisting of lighter atoms has been forced outward by the heat of the sun and the solar wind, close to 1 / 3 of the matter in the inner Solar System is iron.

No comments:

Post a Comment